Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

G. Senthil Kumar, ${ }^{\text {a }}$
 K. Chinnakali, ${ }^{\text {a* }}$
 M. Poornachandran, ${ }^{\text {b }}$
 R. Raghunathan ${ }^{\text {b }}$ and
 Hoong-Kun Fun ${ }^{\text {c* }}$

${ }^{\text {a }}$ Department of Physics, Anna University, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025 , India, and ${ }^{\text {c } X \text {-ray Crystallography Unit, School of Physics, }}$ Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.036$
$w R$ factor $=0.106$
Data-to-parameter ratio $=48.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
5-(Phenylsulfonyl)perhydrothiazolo[3,4-a]-pyrrolo[4,5-c] pyrrole

All the five-membered rings of the title molecule, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, adopt envelope conformations. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into a twodimensional network parallel to the $a b$ plane.

Comment

Pyrrolopyrrole compounds exbhit anti-inflammatory and analgesic activities (Rooks et al., 1982; Muchowski et al., 1989). Inhibitors of human cytomegalovirus (HCMV) protease have been designed based on the 5-oxo-hexahydropyrrolo[3,2b]pyrrole ring system (Borthwick et al., 2000). Pyrrolothiazole derivatives show antileukemic activity (Anderson \& Mach, 1987) and some of them are used as Platelet-Activating Factor (PAF) antagonists (Weissman et al., 1993; Le Naour et al., 1994). They also inhibit cytokine-dependent induction of human immunodeficiency virus (HIV) expression in chronically infected promonocytic cells (Weissman et al., 1993). We report here the structure of the title compound, (I).

(I)

The molecular structure of (I) is illustrated in Fig. 1. All NCsp 3 bond lengths (Table 1) are comparable to the reported mean value of 1.469 (14) \AA (Allen et al., 1987) except the $\mathrm{N} 2-$ C8 bond which is shorter in length. Atom N1 is slightly out of the plane [deviation $=0.356$ (1) \AA] defined by atoms $\mathrm{S} 2, \mathrm{C} 1$ and C 4 , indicating a slight degree of pyramidalization. The sum of the bond angles around the atom $\mathrm{N} 2\left(329.7^{\circ}\right)$ indicates $s p^{3}$ hybridization.

The thiazolidine ring and the two pyrrolidine rings ($\mathrm{N} 1 / \mathrm{C} 1-$ C 4 and $\mathrm{N} 2 / \mathrm{C} 3 / \mathrm{C} 2 / \mathrm{C} 5 / \mathrm{C} 6$) adopt envelope conformations, with atoms N2, N1 and C6 deviating from the S1/C6-C8, C1-C4 and $\mathrm{N} 2 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 5$ planes by 0.541 (1), $0.602(1)$ and 0.586 (1) Å, respectively. The Cremer \& Pople (1975) puckering parameters q_{2} and φ are 0.381 (1) \AA and $284.3(1)^{\circ}$ for the thiazolidine ring, 0.406 (1) \AA and $358.1(1)^{\circ}$ for the pyrrolidine ring ($\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 4$), and 0.386 (1) \AA and $329.0(1)^{\circ}$ for the pyrrolidine ring ($\mathrm{N} 2 / \mathrm{C} 3 / \mathrm{C} 2 / \mathrm{C} 5 / \mathrm{C} 6$).

As seen in Fig. 2, molecules translated by one unit along the a axis are linked by intermolecular $\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$ hydrogen

Figure 1
A view of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 60% probability level.

Figure 2
View of a hydrogen-bonded (dashed lines) sheet in (I). Only the H atoms involved in hydrogen bonding are shown.
bonds (see Table 1 for details and symmetry code), forming a chain. Glide-related molecules in adjacent chains are connected via $\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{O} 2^{\mathrm{ii}}$ and $\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2^{\mathrm{iii}}$ interactions (Table 1), generating a two-dimensional network parallel to the $a b$ plane.

Experimental

A solution of N-allyl- N-(2-oxoethyl)benzenesulfonamide (1 mmol) and thiazolidine-4-carboxylic acid (1.2 mmol) in dry toluene (30 ml) was refluxed for 3 h . After completion of the reaction, the solvent was evaporated under vacuum and the residue was chromatographed using a hexane-ethyl acetate (9:1) mixture, to yield the title compound. It was recrystallized from ethyl acetate.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$
$Z=4$
$M_{r}=310.42$
Monoclinic, $P 2_{\mathrm{b}} / n$
$a=6.5439$ (1) A
$b=9.8794$ (1) A
$c=23.0360(3) \AA$
$\beta=97.451$ (1) ${ }^{\circ}$
$V=1476.70(3) \AA^{3}$

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.845, T_{\text {max }}=0.912$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.056 P)^{2}\right. \\
+0.1806 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.40 \mathrm{e} \AA^{-3}
\end{gathered}
$$

$w R\left(F^{2}\right)=0.106$
$S=1.07$
8831 reflections
181 parameters
H-atom parameters constrained
$D_{x}=1.396 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation $\mu=0.36 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
Block, colorless
$0.39 \times 0.33 \times 0.26 \mathrm{~mm}$

71353 measured reflections 8831 independent reflections 6960 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$ $\theta_{\text {max }}=39.5^{\circ}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C7	$1.8210(10)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.4762(10)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.8665(8)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.4773(9)$
$\mathrm{S} 2-\mathrm{O} 1$	$1.4346(6)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.4348(10)$
$\mathrm{S} 2-\mathrm{O} 2$	$1.4376(6)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.4670(10)$
$\mathrm{S} 2-\mathrm{N} 1$	$1.6253(7)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.4789(10)$
$\mathrm{S} 2-\mathrm{C} 9$	$1.7651(8)$		
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$106.58(6)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 6$	$108.69(6)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{S} 2$	$119.24(5)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 3$	$114.18(6)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 2$	$118.23(5)$	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 3$	$106.80(6)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.99	2.50	$2.9355(9)$	106
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 7 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.38	$3.3247(11)$	158
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 8 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.99	2.54	$3.5031(10)$	165

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$) and were treated as riding on their parent C atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF thanks the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118 and USM shortterm grant No.304/PFIZIK/635028.

organic papers

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Anderson, W. K. \& Mach, R. H. (1987). J. Med. Chem. 30, 2109-2115
Borthwick, A. D., Jane Angier, S., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. \& Weingarten, G. G. (2000). J. Med. Chem. 43, 4452-4464.
Bruker (2005). APEX2 (Version 1.27), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Le Naour, R., Clayette, P., Henin, Y., Mabondzo, A., Raoul, H., Bousseau, A. \& Dormont, D. (1994). J. Gen. Virol. 75, 1379-1388.
Muchowski, J. M., Galeazzi, E., Greenhouse, R., Guzman, A., Perez, V., Ackerman, N., Ballaron, S. A., Rovito, J. R., Tomolonis, A. J. \& Young, J. M (1989). J. Med. Chem. 32, 1202-1207.

Rooks, W. H., Tomolonis, A. J., Maloney, P. J., Wallach, M. B. \& Schuler, M. E. (1982). Agents Actions, 12, 684-690.

Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Weissman, D., Poli, G., Bousseau, A. \& Fauci, A. S. (1993). Proc. Natl Acad. Sci. USA, 90, 2537-2541.

[^0]: © 2006 International Union of Crystallography All rights reserved

